martes, 18 de junio de 2019

Catastro y SIGPAC: la escala, la precisión, las coordenadas UTM y las cifras significativas.


El análisis de las propiedades métricas de los SIG nos descubre que inducen a apreciaciones, valoraciones y conclusiones erróneas. Estos errores tienen su origen al considerar los SIG el concepto de ampliación, zoom o acercamiento como sinónimo de escala. Este error lleva a dar una precisión imposible a escala 1:5.000 (escala de realización del plano) a: la georreferenciación, la medición de distancias, la superficie de recintos y la representación gráfica. En el SIG de las Parcelas Agrícolas (SIGPAC) y el SIG de Catastro (SIGCA), se puede llegar a visualizar a pseudoescala (ampliación) 1:400, obtener coordenadas UTM y realizar mediciones con precisión de un centímetro, en un plano y una ortofotografía a escala 1:5.000. Todo esto es incorrecto, carece de rigor técnico.

La llamamos pseudoescala por:

  • Visualizar bajo el rótulo de escala, cuando se hace a pseudoescala mayor a 1:5.000 (escala de realización del plano), es incorrecto, son ampliaciones (no mejora la métrica).
  • La simbología utilizada en un plano, características de los elementos de representación (sección de los trazados de líneas de linde, el tamaño de los números de parcelas y el resto de la simbología del plano) debían de aumentar de tamaño con la ampliación.
  • Asignar una precisión numérica imposible a escala 1:5.000 a: la métrica, las coordenadas UTM y la representación gráfica, carece del mínimo rigor técnico.

El origen del error puede estar en la metodología digital (virtual) del SIG sin referencias analógicas y distante (el monitor y la ortofotografía), que no ha sido probado (calibrado).

Todo es muy fácil e intuitivo, no requiere conocimientos técnicos. Llegamos a pensar que todo puede hacerse desde el monitor y con precisión de un cm., mejor que con un levantamiento topográfico. En conclusión, los SIG actuales necesitan una revisión que incluya: informar sobre la escala, ajustar las cifras significativas, dar distinto tratamiento a los elementos de la simbología cuando realizamos ampliaciones de acuerdo con la misma,…, hasta ese momento extremar la cautela con los datos numéricos y la información visual (cuando superponemos el plano sobre ortofotografía).27​

El futuro de los SIG

Muchas disciplinas y especializaciones se han beneficiado de la tecnología subyacente en los SIG. El activo mercado de los sistemas de información geográfica se ha traducido en una reducción de costes y mejoras continuas en los componentes de hardware y software de los sistemas. Esto ha provocado que el uso de esta tecnología haya sido asimilada por universidades, gobiernos, empresas e instituciones que lo han aplicado a sectores como los bienes raíces, la salud pública, la criminología, la defensa nacional, el desarrollo sostenible, los recursos naturales, la arqueología, la ordenación del territorio, el urbanismo, el transporte, la sociología o la logística entre otros.

En la actualidad los SIG están teniendo una fuerte implantación en los llamados Servicios Basados en la Localización (LBS) debido al abaratamiento y masificación de la tecnología GPS integrada en dispositivos móviles de consumo (teléfonos móviles, PDAs, ordenadores portátiles). Los LBS permiten a los dispositivos móviles con GPS mostrar su ubicación respecto a puntos de interés fijos (restaurantes, gasolineras, cajeros, hidrantes, etc. más cercanos), móviles (amigos, hijos, autobuses, coches de policía) o para transmitir su posición a un servidor central para su visualización u otro tipo de tratamiento.

Otra de las líneas a destacar dentro de la rama de especialización de análisis de datos espaciales es el auge de las modelizaciones cartográficas. Gracias a ellas podemos modelizar y evaluar tanto aspectos o escenarios actuales como los futuribles con base en variables que les concretemos. Es una gran herramienta de predicción y evaluación y nos permiten evaluar casuísticas que reflejen el comportamiento por ejemplo de las zonas con mayor vulnerabilidad frente a determinados riesgos; la distribución potencial de especies o la dispersión de contaminantes por la atmósfera.16​

Cartografía en entornos web

Por otro lado el mundo de los SIG ha asistido en los últimos años a una explosión de aplicaciones destinadas a mostrar y editar cartografía en entornos web como Google Maps, Bing Maps u OpenStreetMap entre otros. Estos sitios web dan al público acceso a enormes cantidades de datos geográficos. Algunos de ellos utilizan software que, a través de una API, permiten a los usuarios crear aplicaciones personalizadas. Estos servicios ofrecen por lo general callejeros, imágenes aéreas o de satélite, geocodificación, búsquedas en nomenclátores o funcionalidades de enrutamiento.

El desarrollo de Internet y las redes de comunicación, así como el surgimiento de estándares OGC que facilitan la interoperabilidad de los datos espaciales, ha impulsado la tecnología web mapping, con el surgimiento de numerosas aplicaciones que permiten la publicación de información geográfica en la web. De hecho este tipo de servicios web mapping basado en servidores de mapas que se acceden a través del propio navegador han comenzado a adoptar las características más comunes en los SIG tradicionales, lo que ha propiciado que la línea que separa ambos tipos de software se difumine cada vez más.

La tercera dimensión

Los sistemas existentes en la actualidad en el mercado están básicamente sustentados en la gestión y análisis en dos dimensiones de los datos, con las limitaciones que esto supone. Existen sistemas híbridos a medio camino entre el 2D y el 3D que poseen capacidades, fundamentalmente de visualización, denominadas de dos dimensiones y media (2.5D) o falso 3D.

No obstante hoy en día cada vez más se requieren aplicaciones avanzadas con funcionalidades capaces de gestionar conjuntos de datos complejos tal y como se perciben en el mundo real por el usuario, es decir, en tres dimensiones. Este entorno proporciona un conocimiento mucho mejor de los fenómenos y patrones geoespaciales, ya sea a pequeña o gran escala, por ejemplo en la planificación urbana, la geología, la minería, la gestión de redes de abastecimiento, etc.17​

Las dificultades con que se enfrenta un SIG completamente 3D son grandes y van desde las gestión de geometrías 3D y su topología hasta su visualización de una manera sencilla, pasando por el análisis y geoprocesado de la información.

Actualmente el Open Geospatial Consortium trabaja en cómo abordar la combinación de los diferentes tipos de modelados resultantes de las distintas tecnologías SIG, CIM, CAD y BIM de la forma más íntegra posible. La interoperabilidad de estos formatos y modelos de datos constituye el primer paso hacia la creación de modelos 3D inteligentes a diferentes escalas.18​

Semántica y SIG

Las herramientas y tecnologías emergentes desde la W3C Semantic Web Activity están resultando útiles para los problemas de integración de datos en los sistemas de información. De igual forma, esas tecnologías se han propuesto como un medio para facilitar la interoperabilidad y la reutilización de datos entre aplicaciones SIG19​ 20​y también para permitir nuevos mecanismos de análisis.21​ En suma la incorporación de cierta inteligencia artificial que dote a estos sistemas de nuevas funcionalidades de aprendizaje automático, tales como la recuperación selectiva de información, el análisis estadístico, la generalización automática de mapas o la interpretación automática de imágenes geoespaciales.22​

Las ontologías son un componente clave de este enfoque semántico, ya que facilitan una legibilidad por parte de las máquinas de conceptos y relaciones en un dominio dado. Esto a su vez permite al SIG centrarse en el significado de los datos en lugar de su sintaxis o estructura. Por ejemplo, podemos razonar que un tipo de cobertura del suelo clasificada como bosques de frondosas caducifolias son un conjunto de datos detallados de una capa sobre cubiertas vegetales de tipo forestal con una clasificación menos minuciosa, lo que podría ayudar a un SIG a fusionar automáticamente ambos conjuntos de datos en una capa más general de clasificación de la cubierta vegetal terrestre.

Pero el desarrollo futuro de los SIG con la inclusión de la semántica en la gestión no solo permitiría la generalización o coflación de datos geoespaciales con cierta similitud, sino que, por ejemplo, facilitaría la generación automatizada o semi-asistida de una tarea tradicionalmente considerada como tediosa y poco gratificante como es la creación de metadatos para las diferentes capas de información geográfica.23​

Ontologías muy profundas y exhaustivas han sido desarrolladas en áreas relacionadas con el uso de los SIG, como por ejemplo la Ontología de Hidrología desarrollada por el Ordnance Survey en el Reino Unido, la ontología geopolítica de la FAO,24​ las ontologías OWL hydrOntology y Ontología GML y las ontologías SWEET llevadas a cabo por el Laboratorio de Propulsión a Chorro de la NASA.

Los SIG temporales

Una de las principales fronteras a las que se enfrenta los sistemas de información geográfica es la de agregar el elemento tiempo a los datos geoespaciales. Los SIG temporales incorporan las tres dimensiones espaciales (X, Y y Z) añadiendo además el tiempo en una representación 4D que se asemeja más a la realidad. La temporalidad en los SIG recoge los procesos dinámicos de los elementos representados. Por ejemplo, imaginémonos las posibilidades que ofrecería un sistema de información geográfica que permita ralentizar y acelerar el tiempo de los procesos geomorfológicos que en él se modelizan y analizar las diferentes secuencias morfogenéticas de un determinado relieve terrestre; o modelizar el desarrollo urbano de una área determinada a lo largo de un período dado.18​

Dentro de la gestión de archivos ráster, el factor tiempo también juega un papel importante. Por ejemplo a la hora de visualizar cambios en la superficie terrestre. Con la apertura de las imágenes satélite de manera gratuita desde plataformas como Land Viewer, es posible disponer de un amplio repertorio de imágenes satélite a través de las cuales realizar timelapses y ver la evolución de la información en el tiempo.

Los SIG y las Infraestructuras de Datos Espaciales (IDE)

El crecimiento exponencial de los Sistemas de Información Geográfica, de sus herramientas y de la facilidad de acceso a las mismas, ha producido un efecto no deseado en los organismos de gobierno que es la excesiva dispersión y divergencia de la información, así como la escasa normalización de los datos. Para solventar este problema y lograr una información unificada, de calidad, normalizada, sustentable y de acceso público se han venido desarrollando las denominadas Infraestructuras de Datos Espaciales (IDE) locales y regionales. Mediante estas se persigue obtener una convergencia de los esfuerzos sobre la gestión de la información pública, así como también de la que corresponde a organismos de investigación [cita requerida]

Los SIG educativos

A finales del siglo XX los SIG empezaron a ser reconocidos como herramientas que favorecían el aprendizaje, fundamentalmente mediante la investigación, el constructivismo y el aprendizaje basado en problemas. Los beneficios de los SIG parecen enfocados en desarrollar el llamado pensamiento espacial, pero no existe suficiente bibliografía o datos estadísticos que muestren el alcance concreto del uso de los SIG en la educación alrededor del mundo, aunque en aquellos países donde el currículum los menciona su expansión ha sido más rápida .25​

Los SIG parece que proporcionan muchas ventajas en la enseñanza de la Geografía porque permiten un análisis veraz basado en datos geográficos reales y también plantear muchas preguntas de investigación por parte de los profesores y los alumnos en las aulas, así como contribuir a la mejora en el aprendizaje desarrollando el pensamiento espacial y geográfico y, en muchos casos, la motivación del alumnado .26​

Los SIG y las tecnologías

La tecnología ha evolucionado de la mano de los Sistemas de Información Geográfica siendo los SIG, en muchas ocasiones, un complemento adicional a la propia información geográfica. Ejemplo de ello lo encontramos con la llegada de herramientas como la Realidad Aumentada o la incorporación de los drones dentro de nuestras vidas. El manejo de la Realidad Aumentada ha permitido la comprensión de los SIG y ha supuesto una herramienta adicional en la gestión del territorio además de una herramienta educativa. Como ejemplo de encontramos Sand Box. Otras tecnologías como los vehículos aéreos no tripulados, o drones, han permitido mapear el territorio obteniendo imágenes de alta resolución que pueden ser tomadas en cualquier momento sin necesidad de realizar vuelos en avionetas o el empleo de satélites.

Técnicas utilizadas en los sistemas de información geográfica


La creación de datos 

La teledetección es una de las principales fuentes
de datos para los SIG. En la imagen artística una
representación de la constelación de satélites 
RapidEye.
La teledetección es una de las principales fuentes de datos para los SIG. En la imagen artística una representación de la constelación de satélites RapidEye.
Las modernas tecnologías SIG trabajan con información digital, para la cual existen varios métodos utilizados en la creación de datos digitales. El método más utilizado es la digitalización, donde a partir de un mapa impreso o con información tomada en campo se transfiere a un medio digital por el empleo de un programa de Diseño Asistido por Ordenador (DAO o CAD) con capacidades de georreferenciación.

Dada la amplia disponibilidad de imágenes orto-rectificadas (tanto de satélite y como aéreas), la digitalización por esta vía se está convirtiendo en la principal fuente de extracción de datos geográficos. Esta forma de digitalización implica la búsqueda de datos geográficos directamente en las imágenes aéreas en lugar del método tradicional de la localización de formas geográficas sobre un tablero de digitalización.

La representación de los datos


Los datos SIG representan los objetos del mundo real (carreteras, el uso del suelo, altitudes). Los objetos del mundo real se pueden dividir en dos abstracciones: objetos discretos (una casa) y continuos (cantidad de lluvia caída, una elevación). Existen dos formas de almacenar los datos en un SIG: raster y vectorial.

Los SIG que se centran en el manejo de datos en formato vectorial son más populares en el mercado. No obstante, los SIG raster son muy utilizados en estudios que requieran la generación de capas continuas, necesarias en fenómenos no discretos; también en estudios medioambientales donde no se requiere una excesiva precisión espacial (contaminación atmosférica, distribución de temperaturas, localización de especies marinas, análisis geológicos, etc.).


Interpretación cartográfica vectorial (izquierda)
y raster (derecha) de elementos geográficos.
Raster
Un tipo de datos raster es, en esencia, cualquier tipo de imagen digital representada en mallas. El modelo de SIG raster o de retícula se centra en las propiedades del espacio más que en la precisión de la localización. Divide el espacio en celdas regulares donde cada una de ellas representa un único valor. Se trata de un modelo de datos muy adecuado para la representación de variables continuas en el espacio.

Interpretación cartográfica vectorial (izquierda) y raster (derecha) de elementos geográficos.
Cualquiera que esté familiarizado con la fotografía digital reconoce el píxel como la unidad menor de información de una imagen. Una combinación de estos píxeles creará una imagen, a distinción del uso común de gráficos vectoriales escalables que son la base del modelo vectorial. Si bien una imagen digital se refiere a la salida como una representación de la realidad, en una fotografía o el arte transferidos a la computadora, el tipo de datos raster reflejará una abstracción de la realidad. Las fotografías aéreas son una forma de datos raster utilizada comúnmente con un sólo propósito: mostrar una imagen detallada de un mapa base sobre la que se realizarán labores de digitalización. Otros conjuntos de datos raster podrán contener información referente a las elevaciones del terreno (un Modelo Digital del Terreno), o de la reflexión de la luz de una particular longitud de onda (por ejemplo las obtenidas por el satélite LandSat), entre otros.

Los datos raster se compone de filas y columnas de celdas, cada celda almacena un valor único. Los datos raster pueden ser imágenes (imágenes raster), con un valor de color en cada celda (o píxel). Otros valores registrados para cada celda puede ser un valor discreto, como el uso del suelo, valores continuos, como temperaturas, o un valor nulo si no se dispone de datos. Si bien una trama de celdas almacena un valor único, estas pueden ampliarse mediante el uso de las bandas del raster para representar los colores RGB (rojo, verde, azul), o una tabla extendida de atributos con una fila para cada valor único de células. La resolución del conjunto de datos raster es el ancho de la celda en unidades sobre el terreno.

Los datos raster se almacenan en diferentes formatos, desde un archivo estándar basado en la estructura de TIFF, JPEG, etc. a grandes objetos binarios (BLOB), los datos almacenados directamente en Sistema de gestión de base de datos. El almacenamiento en bases de datos, cuando se indexan, por lo general permiten una rápida recuperación de los datos raster, pero a costa de requerir el almacenamiento de millones registros con un importante tamaño de memoria. En un modelo raster cuanto mayores sean las dimensiones de las celdas menor es la precisión o detalle (resolución) de la representación del espacio geográfico.

Representación de curvas de nivel sobre
una superficie tridimensional generada
por una red irregular de triángulos TIN.
Vectorial
En un SIG, las características geográficas se expresan con frecuencia como vectores, manteniendo las características geométricas de las figuras.
Representación de curvas de nivel sobre una superficie tridimensional generada por una red irregular de triángulos TIN.
En los datos vectoriales, el interés de las representaciones se centra en la precisión de la localización de los elementos geográficos sobre el espacio y donde los fenómenos a representar son discretos, es decir, de límites definidos. Cada una de estas geometrías está vinculada a una fila en una base de datos que describe sus atributos. Por ejemplo, una base de datos que describe los lagos puede contener datos sobre la batimetría de estos, la calidad del agua o el nivel de contaminación. Esta información puede ser utilizada para crear un mapa que describa un atributo particular contenido en la base de datos. Los lagos pueden tener un rango de colores en función del nivel de contaminación. Además, las diferentes geometrías de los elementos también pueden ser comparadas. Así, por ejemplo, el SIG puede ser usado para identificar aquellos pozos (geometría de puntos) que están en torno a 2 kilómetros de un lago (geometría de polígonos) y que tienen un alto nivel de contaminación.
Los elementos vectoriales pueden crearse respetando una integridad territorial a través de la aplicación de unas normas topológicas tales como que "los polígonos no deben superponerse". Los datos vectoriales se pueden utilizar para representar variaciones continuas de fenómenos. Las líneas de contorno y las redes irregulares de triángulos (TIN) se utilizan para representar la altitud u otros valores en continua evolución. Los TIN son registros de valores en un punto localizado, que están conectados por líneas para formar una malla irregular de triángulos. La cara de los triángulos representan, por ejemplo, la superficie del terreno.

Para modelar digitalmente las entidades del mundo real se utilizan tres elementos geométricos: el punto, la línea y el polígono.

  • Puntos

Los puntos se utilizan para las entidades geográficas que mejor pueden ser expresadas por un único punto de referencia. En otras palabras: la simple ubicación. Por ejemplo, las localizaciones de los pozos, picos de elevaciones o puntos de interés. Los puntos transmiten la menor cantidad de información de estos tipos de archivo y no son posibles las mediciones. También se pueden utilizar para representar zonas a una escala pequeña. Por ejemplo, las ciudades en un mapa del mundo estarán representadas por puntos en lugar de polígonos.
  • Líneas o polilíneas
Las líneas unidimensionales o polilíneas14​ son usadas para rasgos lineales como ríos, caminos, ferrocarriles, rastros, líneas topográficas o curvas de nivel. De igual forma que en las entidades puntuales, en pequeñas escalas pueden ser utilizados para representar polígonos. En los elementos lineales puede medirse la distancia.
  • Polígonos
Los polígonos bidimensionales se utilizan para representar elementos geográficos que cubren un área particular de la superficie de la tierra. Estas entidades pueden representar lagos, límites de parques naturales, edificios, provincias, o los usos del suelo, por ejemplo. Los polígonos transmiten la mayor cantidad de información en archivos con datos vectoriales y en ellos se pueden medir el perímetro y el área.


Historia de su desarrollo


Hace unos 15.000 años5​ en las cuevas de Lascaux (Francia) los hombres de Cro-Magnon pintaban en las paredes los animales que cazaban, asociando estos dibujos con trazas lineales que, se cree, cuadraban con las rutas de migración de esas especies.6​ Si bien este ejemplo es simplista en comparación con las tecnologías modernas, estos antecedentes tempranos imitan a dos elementos de los sistemas de información geográfica modernos: una imagen asociada con un atributo de información.7​
Mapa original del Dr. John Snow. Los puntos son casos de cólera durante la epidemia en Londres de 1854. Las cruces representan los pozos de agua de los que bebían los enfermos.
Mapa original del Dr. John Snow. Los puntos son casos
de cólera durante la epidemia en Londres de 1854.
Las cruces representan los pozos de
agua de los que bebían los enfermos.

En 1854, el pionero de la epidemiología, el Dr. John Snow, proporcionaría otro clásico ejemplo de este concepto cuando cartografió, en un ya famoso mapa, la incidencia de los casos de cólera en el distrito de Soho en Londres.8​ 
Este protoSIG, uno de los ejemplos más tempranos del método geográfico,9​ permitió a Snow localizar con precisión un pozo de agua contaminado como la fuente causante del brote.
Si bien la cartografía topográfica y temática ya existía previamente, el mapa de John Snow fue el único hasta el momento que, utilizando métodos cartográficos, no solo representaba la realidad, sino que por primera vez analizaba conjuntos de fenómenos geográficos dependientes.
Al comienzo del siglo XX, se desarrolló la "foto litografía", donde los mapas eran separados en capas. El avance del hardware impulsado por la investigación en armamento nuclear daría lugar, a comienzos de los años 60, al desarrollo de aplicaciones cartográficas para computadores de propósito general.10​
El año 1962 vio la primera utilización real de los SIG en el mundo, concretamente en Ottawa (Ontario, Canadá) y a cargo del Departamento Federal de Silvicultura y Desarrollo Rural. Desarrollado por el geógrafo inglés Roger Tomlinson, el llamado Sistema de información geográfica de Canadá (Canadian Geographic Information System, CGIS) se utilizó para almacenar, analizar y manipular datos recogidos para el Inventario de Tierras Canadá (Canada Land Inventory, CLI) - una iniciativa orientada a la gestión de los vastos recursos naturales del país con información cartográfica relativa a tipos y usos del suelo, agricultura, espacios de recreo, vida silvestre, aves acuáticas y silvicultura, todo ello a una escala de 1:50.000. Se añadió, así mismo, un factor de clasificación para permitir el análisis de la información.
El Sistema de información geográfica de Canadá fue el primer SIG en el mundo similar a tal y como los conocemos hoy en día, y un considerable avance con respecto a las aplicaciones cartográficas existentes hasta entonces, puesto que permitía superponer capas de información, realizar mediciones y llevar a cabo digitalizaciones y escaneos de datos. Asimismo, soportaba un sistema nacional de coordenadas que abarcaba todo el continente, una codificación de líneas en "arcos" que poseían una verdadera topología integrada y que almacenaba los atributos de cada elemento y la información sobre su localización en archivos separados. Como consecuencia de esto, Tomlinson está considerado como "el padre de los SIG", en particular por el empleo de información geográfica convergente estructurada en capas, lo que facilita su análisis espacial.11​El CGIS estuvo operativo hasta la década de los 90 llegando a ser la base de datos sobre recursos del territorio más grande de Canadá. Fue desarrollado como un sistema basado en una computadora central y su fortaleza radicaba en que permitía realizar análisis complejos de conjuntos de datos que abarcaban todo el continente. El software, decano de los sistemas de información geográfica, nunca estuvo disponible de manera comercial.
En 1964, Howard T. Fisher formó en la Universidad de Harvard el Laboratorio de Computación Gráfica y Análisis Espacial en la Harvard Graduate School of Design (LCGSA 1965-1991), donde se desarrollaron una serie de importantes conceptos teóricos en el manejo de datos espaciales, y en la década de 1970 había difundido código de software y sistemas germinales, tales como SYMAP, GRID y ODYSSEY - los cuales sirvieron como fuentes de inspiración conceptual para su posterior desarrollos comerciales - a universidades, centros de investigación y empresas de todo el mundo.12​
En la década de los 80, M&S Computing (más tarde Intergraph), Environmental Systems Research Institute (ESRI) y CARIS (Computer Aided Resource Information System) emergerían como proveedores comerciales de software SIG. Incorporaron con éxito muchas de las características de CGIS, combinando el enfoque de primera generación de sistemas de información geográfica relativo a la separación de la información espacial y los atributos de los elementos geográficos representados con un enfoque de segunda generación que organiza y estructura estos atributos en bases de datos.
En la década de los años 70 y principios de los 80 se inició en paralelo el desarrollo de dos sistemas de dominio público. El proyecto Map Overlay and Statistical System (MOSS) se inició en 1977 en Fort Collins (Colorado, EE. UU.) bajo los auspicios de la Western Energy and Land Use Team (WELUT) y el Servicio de Pesca y Vida Silvestre de Estados Unidos (US Fish and Wildlife Service). En 1982 el Cuerpo de Ingenieros del Laboratorio de Investigación de Ingeniería de la Construcción del Ejército de los Estados Unidos (USA-CERL) desarrolla GRASS como herramienta para la supervisión y gestión medioambiental de los territorios bajo administración del Departamento de Defensa.
Esta etapa de desarrollo está caracterizada, en general, por la disminución de la importancia de las iniciativas individuales y un aumento de los intereses a nivel corporativo, especialmente por parte de las instancias gubernamentales y de la administración.

Los 80 y 90 fueron años de fuerte aumento de las empresas que comercializaban estos sistemas, debido el crecimiento de los SIG en estaciones de trabajo UNIX y ordenadores personales. Es el periodo en el que se ha venido a conocer en los SIG como la fase comercial. El interés de las distintas grandes industrias relacionadas directa o indirectamente con los SIG crece en sobremanera debido a la gran avalancha de productos en el mercado informático internacional que hicieron generalizarse a esta tecnología.
En la década de los noventa se inicia una etapa comercial para profesionales, donde los sistemas de información geográfica empezaron a difundirse al nivel del usuario doméstico debido a la generalización de los ordenadores personales o microordenadores.
A finales del siglo XX principio del XXI el rápido crecimiento en los diferentes sistemas se ha consolidado, restringiéndose a un número relativamente reducido de plataformas. Los usuarios están comenzando a exportar el concepto de visualización de datos SIG a Internet, lo que requiere una estandarización de formato de los datos y de normas de transferencia. Más recientemente, ha habido una expansión en el número de desarrollos de software SIG de código libre, los cuales, a diferencia del software comercial, suelen abarcar una gama más amplia de sistemas operativos, permitiendo ser modificados para llevar a cabo tareas específicas.

Funcionamiento de un SIG

Un SIG puede mostrar la información en capas temáticas
para realizar análisis multicriterio complejos.
Un SIG puede mostrar la información en capas temáticas para realizar análisis multicriterio complejos.
El SIG funciona como una base de datos con información geográfica (datos alfanuméricos) que se encuentra asociada por un identificador común a los objetos gráficos de los mapas digitales. De esta forma, señalando un objeto se conocen sus atributos e, inversamente, preguntando por un registro de la base de datos se puede saber su localización en la cartografía.

SIG proporciona, para cada tipo de organización basada en ubicación, una plataforma para actualizar datos geográficos sin perder tiempo visitando el sitio y actualizar la base de datos manualmente. SIG cuando se interpreta con otras soluciones integradas tales como SAP2​ y Wolfram Language3​ permite crear potente sistemas de soporte a decisiones a nivel corporativo.4​[Aclaración requerida]

La razón fundamental para utilizar un SIG es la gestión de información espacial. El sistema permite separar la información en diferentes capas temáticas y las almacena independientemente, permitiendo trabajar con ellas de manera rápida y sencilla, facilitando al profesional la posibilidad de relacionar la información existente a través de la topología geoespacial de los objetos, con el fin de generar otra nueva que no podríamos obtener de otra forma.

Las principales cuestiones que puede resolver un sistema de información geográfica, ordenadas de menor a mayor complejidad, son:
  1. Localización: preguntar por las características de un lugar concreto.
  2. Condición: el cumplimiento o no de unas condiciones impuestas al sistema. Se busca un determinado lugar que reúna ciertas condiciones
  3. Tendencia: comparación entre situaciones temporales o espaciales distintas de alguna característica. Permite conocer la variación de algunas características a través de un determinado periodo.
  4. Rutas: cálculo de rutas óptimas entre dos o más puntos.
  5. Pautas: detección de pautas espaciales. Busca determinar en una zona específica, las relaciones que pudieran existir entre dos o más variables.
  6. Modelos: generación de modelos a partir de fenómenos o actuaciones simuladas. Si un sistema planteado se somete a determinadas modificaciones de sus variables cómo queda definido el nuevo sistema, cuánto ha cambiado, etc.

Por ser tan versátiles, el campo de aplicación de los sistemas de información geográfica es muy amplio, pudiendo utilizarse en la mayoría de las actividades con un componente espacial. La profunda revolución que han provocado las nuevas tecnologías ha incidido de manera decisiva en su evolución.


sábado, 15 de junio de 2019

Concepto de SIG

Ejemplo de capas temáticas de un SIG
Un sistema de información geográfica (también conocido con los acrónimos SIG en español o GIS en inglés) es un conjunto de herramientas que integra y relaciona diversos componentes (usuarios, hardware, software, procesos) que permiten la organización, almacenamiento, manipulación, análisis y modelización de grandes cantidades de datos procedentes del mundo real que están vinculados a una referencia espacial, facilitando la incorporación de aspectos sociales-culturales, económicos y ambientales que conducen a la toma de decisiones de una manera más eficaz.
En el sentido más estricto, es cualquier sistema de información capaz de integrar, almacenar, editar, analizar, compartir y mostrar la información geográficamente referenciada. En un sentido más genérico, los SIG son herramientas que permiten a los usuarios crear consultas interactivas, analizar la información espacial, editar datos, mapas y presentar los resultados de todas estas operaciones.
Por otro lado, un sistema de información geográfica puede ser concebido como un modelo que representa el mundo real. (F. Bouillé1​ 1978)

La tecnología de los SIG puede ser utilizada para investigaciones científicas, la gestión de los recursos, la gestión de activos, la arqueología, la evaluación del impacto ambiental, la planificación urbana, la cartografía, la sociología, la geografía histórica, el marketing, la logística por nombrar unos pocos. Por ejemplo, un SIG podría permitir a los grupos de emergencia calcular fácilmente los tiempos de respuesta en caso de un desastre natural, o encontrar los humedales que necesitan protección contra la contaminación, o pueden ser utilizados por una empresa para ubicar un nuevo negocio y aprovechar las ventajas de una zona de mercado con escasa competencia.Para mayor informacion hacer CLICK AQUI